Science Share on Facebook Share on Twitter Share on Pinterest Share on LinkedIn Hirotaka Koga, the researchers crafted three-dimensional-network-structured semiconducting materials using cellulose nanofibres derived from wood pulp as building blocks. The result is a semiconducting paper that could be made with surface areas of more than 20 cm in diameter. According to the team, the new semiconducting cellulose nanopaper (CNP) can be tailored for a variety of applications. The paper itself can be shaped into different designs and the material’s electrical conduction properties can be tuned from 1012 to 10–2 Ω cm – values that exceed those of previously-reported 3D semiconducting materials – by changing the concentration of charge carriers (electrons and holes) in it. This means it is suitable for use in many devices, from water vapour sensors to electrodes in enzymatic biofuel cells. Paper folding cutting Koga and colleagues fabricated their nanocellulose paper semiconductor from a nanocellulose/water dispersion using a combination of paper folding (origami) and paper cutting (kirigami) techniques. They also applied an iodine treatment to their material to protect its nanostructure. To demonstrate the material’s capabilities, the researchers fabricated several differently-shaped structures, including a bird and a box by folding and an apple and snowflakes by punching out pieces of the paper. They also produced more intricate structures using laser cutting. Photonic cellulose goes iridescent The team say that the electrical and chemical properties of the CNP semiconductor might be altered further by modifying its molecular structure using techniques such as doping with other species of atoms. “We will be further tuning the electrical and chemical properties of the new semiconductor as well as its fine patterning,” Koga tells Physics World. In their paper, which is published in ACS Nano, the researchers say that their study is a milestone in manipulating the functionality and practicality of semiconducting nanomaterials for various electronic applications. “As such CNP semiconductors can be prepared from ubiquitous and abundant biological resources, our strategy might be used to produce sustainable electronics,” they write. Share on Facebook Share on Twitter Share on Pinterest Share on LinkedIn Products You May Like Ads by AmazonArticles You May Like The best Nintendo Switch controllers for 2025 American Express to pay $230 million to settle fraud probe DOJ sues Walgreens for prescriptions filled without medical purposes Creator V.E. Schwab Talks Plans for Future 10 Wintery Horror Novels That Will Chill You to the Bone